首页> 外文OA文献 >Piecewise-Linear Approximation Methods for Nonseparable Convex Optimization
【2h】

Piecewise-Linear Approximation Methods for Nonseparable Convex Optimization

机译:不可分凸优化的分段线性逼近方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An algorithm is described for the solution of nonseparable convex optimization problems. This method utilizes iterative piecewise-linear approximation of the nonseparable objective function, but requires function values only along a translated set of axes, thereby avoiding the curse of dimensionality commonly associated with grid methods for multi-dimensional problems. A global convergence proof is given under the assumptions that the objective function is Lipschitz continuous and differentiable and that the feasible set is convex and compact. The method is well-suited to linearly constrained large-scale optimization, since the direction-finding problems reduce to linear programs of manageable size. It is particularly appropriate for nonlinear networks, since it preserves the network structure of the constraints. In addition, because the resulting objective function approximation is separable, this approach permits for certain problem classes a decomposition that may be exploited for parallel computation. Some numerical results on the CRYSTAL multicomputer are presented to illustrate this decomposition feature.
机译:描述了一种解决不可分凸优化问题的算法。该方法利用了不可分离的目标函数的迭代分段线性逼近,但是仅沿平移的轴集要求函数值,从而避免了多维问题通常与网格方法相关的维数诅咒。假设目标函数为Lipschitz连续且可微,且可行集为凸且紧致,则给出了全局收敛性证明。该方法非常适合线性约束的大规模优化,因为方向查找问题减少到可控制大小的线性程序。它特别适用于非线性网络,因为它保留了约束的网络结构。另外,由于得到的目标函数近似值是可分离的,因此该方法允许对某些问题类别进行分解,以用于并行计算。给出了在CRYSTAL多计算机上的一些数值结果,以说明此分解功能。

著录项

  • 作者

    B. Feijoo; R. R. Meyer;

  • 作者单位
  • 年度 1988
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号